
WebSphere User Group - 2008

SCA

Composing Business Solutions
using SCA

Dr Mike Edwards
IBM Hursley
mike_edwards@uk.ibm.com

2WebSphere User Group - 2008

SCA

All statements regarding IBM's future plans, direction

and intent are subject to change or withdrawal without

notice, and represent goals and objectives only. Such

statements do not represent a commitment of future

availability, content, performance or function of any

products or features.

3WebSphere User Group - 2008

SCA

Service Component Architecture (SCA):

A model for the creation of business systems
using Service-Oriented Architecture
by the composition and deployment
of new and existing service components

� SCA: Why

� SCA: Scenarios

� SCA: Details

� SCA: Specifications, Standardization and
Industry Support

4WebSphere User Group - 2008

SCA

What We have Today

� Complexity
� Rigid, brittle architectures
� Inability to evolve

5WebSphere User Group - 2008

SCA

What we want to get to

� Well-defined interfaces with business-level semantics

� Standardized communication protocols

� Flexible recombination of services to enhance software flexibility

Service-Oriented Architecture is one of the key technologies to enable
flexibility and reduce complexity

+

6WebSphere User Group - 2008

SCA

SOA Programming Model (1)

� SOA Programming Model derives from the
basic concept of a service:

– A service is an abstraction that encapsulates a software function.

– Developers build services, use services and develop solutions that aggregate
services.

– Composition of services into integrated solutions is a key activity

7WebSphere User Group - 2008

SCA

SOA Programming Model (2)

� Core Elements:

– Service Assembly
– technology- and language- independent representation of composition of services

– Service Components
– technology- and language-independent representation of composable service

implementation

– Service Data Objects
– technology- and language-Independent representation of service data entity

8WebSphere User Group - 2008

SCA

What are SCA and SDO?

� Service Component Architecture
–an executable model for building service-oriented
applications as composed networks of service
components

–“how to build composite service applications”

� Service Data Objects
–a unified model for the handling of (service) data
irrespective of its source or target

–“how to handle data in a services environment”

9WebSphere User Group - 2008

SCA

Service Component Architecture (SCA):
Simplified Programming Model for SOA

� executable model for:
� building service components

� assembling components into applications

� deploying to (distributed) runtime environments

– Service components built from new or existing code

using SOA principles

– vendor-neutral – supported across the industry

– language-neutral – components written using any
language

– technology-neutral – use any communication
protocols and infrastructure to link components

10WebSphere User Group - 2008

SCA

SCA: What is it NOT

� Does not model individual workflows
– use BPEL or other workflow languages

� Is not Web services
– SCA may use Web services, but can also build solutions with

no Web services content

� Is not tied to a specific runtime environment
– distributed, hetergeneous, large, small

� Does not force use of specific programming
languages and technologies
– aims to encompass many languages, technologies

11WebSphere User Group - 2008

SCA

Key benefits of SCA

� Loose Coupling: components integrate without need to know how others

are implemented

� Flexibility: components can easily be replaced by other components

� Services can be easily invoked either synchronously or asynchronously

� Composition of solutions: clearly described

� Productivity: easier to integrate components to form composite application

� Heterogeneity: multiple implementation languages, communication

mechanisms

� Declarative application of infrastructure services

� Simplification for all developers, integrators and application deployers

12WebSphere User Group - 2008

SCA

Warehouse

Service

WarehouseComposite

Warehouse
Broker

Component

Warehouse
Component

Order

Processing

Service

OrderProcessing
Component

Shipping

Reference

External

Warehouse

Reference

Payments
Component

Payment

Service

AccountsComposite
External

Banking

Reference

Accounts
Ledger

Component

SCA assembly

BPEL

Java EE

C++

SOAP/HTTP

JMS

RMI/IIOP

Mixed:Mixed:Mixed:Mixed:
---- technologiestechnologiestechnologiestechnologies
---- app locationsapp locationsapp locationsapp locations

MultiMultiMultiMulti----levellevellevellevel
compositioncompositioncompositioncomposition

13WebSphere User Group - 2008

SCA

Agenda

� SCA scenarios

14WebSphere User Group - 2008

SCA

Bottom-up Composition

Select a set of existing component
implementations for building the new
composite

services references

properties

Configure the component properties

Hand off the composite to

Deployer

Composite

Draw internal wires

properties
Wrap the components in a
composite and configure
external services/references

15WebSphere User Group - 2008

SCA

Top-down Composition

Start with gathering
requirements for the top-level
composite

Define the services/references

and properties for the composite

Composite

Service

Ref

Properties

Break down the composite

into individual components
and wires between them

Recursively break down
each component

Hand off the individual
component contracts to

developers for implementation

Ref

16WebSphere User Group - 2008

SCA

Heterogeneous Assembly

Components in the same composite share a common
context for many aspects such as installation,
deployment, security settings, logging behavior, etc.

Java
BPEL

Legacy

PHP

C++

17WebSphere User Group - 2008

SCA

Implementation Reuse
– By Configuration

Select an existing component
implementation

Configure its behavior (via setting
props, refs) to match the current

requirements

E.g. Configure multiple instances
of product pricing component,
each with different currency, tax

rate, discount charts, etc.
Component

… …

Services

References

Properties

Implementation

- Java

- BPEL
- Composite

Deploy the component implementation
- Multiple instances of the same
implementation may be running

simultaneously

18WebSphere User Group - 2008

SCA

Deployment Flexibility

Services

References

PropertiesSOAP/HTTP
WS Binding

JMS
Binding

JCA Binding

WS

Clients

WS

Clients

JMS
Clients

JMS
Clients

ERP

Service

ERP

Service

Deployer chooses and configures communication
mechanisms for services/references without
having to modify the component implementation

19WebSphere User Group - 2008

SCA

Abstract policy decleration

0. Policy Administrator authors SCA policySets with concrete policies
1. Developer specifies intents on SCA assembly
2. Developer hands over SCA assembly to Deployer
3. Deployer configures SCA assembly by assigning SCA policySets (could be automated)
4. Deployer deploys configured SCA Assembly to SCA Runtime
5. Deployer updates Registry

Repository

RegistrySCA
policySets

Developer

SCA Runtime

Deployer

SCA
Assembly

1 2
SCA

Assembly

Policy
Administrator

0

3
4

5

20WebSphere User Group - 2008

SCA

Agenda

� SCA details

21WebSphere User Group - 2008

SCA

SCA Elements

� Assembly Model
– how to define structure of composite applications

� Client & Implementation specifications
– how to write business services in particular languages

– Java, C++, BPEL, PHP….

� Binding specifications
– how to use access methods

– Web services, JMS, RMI-IIOP, REST…

� Policy Framework
– Security, Transactions, Reliable messaging…

22WebSphere User Group - 2008

SCA

Component

� configured instance of implementation
– more than one component can use same implementation

� provides and consumes services

� Sets values for implementation properties

� Sets service references by wiring them to services

Component… …

services

references

properties

Implementation
- Java
- BPEL
- Composite
…

23WebSphere User Group - 2008

SCA

Composite

Composite A

Component
AService

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Component
B

Service interface
- Java interface
- WSDL PortType

Reference interface
- Java interface
- WSDL PortType

Wire
PromotePromote

Reference

Property
setting

Properties

24WebSphere User Group - 2008

SCA

Service
AccountService

Reference
StockQuote
Service

AccountData
Service
Component

bigbank.accountcomposite

AccountService
Component

Service
AccountService

AccountData
Service
Component

Simple Example

25WebSphere User Group - 2008

SCA

<reference name=“StockQuoteService" promote="AccountServiceComponent/StockQuoteService">

<interface.java interface="services.stockquote.StockQuoteService"/>

<binding.ws port="http://example.org/StockQuoteService#

wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/>

</reference>

<service name="AccountService" promote="AccountServiceComponent">

<interface.java interface="services.account.AccountService"/>

<binding.ws port="http://www.example.org/AccountService#

wsdl.endpoint(AccountService/AccountServiceSOAP)"/>

</service>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bigbank.accountcomposite" >

<composite>

<component name="AccountServiceComponent">

<implementation.java class="services.account.AccountServiceImpl"/>

<reference name="StockQuoteService"/>

<reference name="AccountDataService"

target="AccountDataServiceComponent/AccountDataService"/>

<property name="currency">EURO</property>

</component>

<component name="AccountDataServiceComponent">

<implementation.bpel process=“QName"/>

<service name="AccountDataService">

<interface.java interface="services.accountdata.AccountDataService"/>

</service>

</component>

StockQuotebigbank.accountcomposite

AccountService
Component

Service
AccountService

Reference
StockQuote
Service

AccountData
Service
Component

Reference
StockQuote
Service

26WebSphere User Group - 2008

SCA

Java Implementation Example:
Service Interface

package org.example.services.account;

@Remotable

public interface AccountService {

public AccountReport getAccountReport(String customerID);

}

Interface is callable
remotely

eg. as a Web service

27WebSphere User Group - 2008

SCA

Java Implementation Example – Implementation (part 1)

package org.example.services.account;

import org.osoa.sca.annotations.*;

@Service(interfaces = AccountService.class)

public class AccountServiceImpl implements AccountService {

private String currency = "USD";

private AccountDataService accountDataService;

private StockQuoteService stockQuoteService;

public AccountServiceImpl(

@Property("currency") String currency,

@Reference("accountDataService") AccountDataService dataService,

@Reference("stockQuoteService") StockQuoteService stockService) {

this.currency = currency;

this.accountDataService = dataService;

this.stockQuoteService = stockService;

}

Annotation for the

service offered by
this class

Constructor with
annotations for
injected property

and references

28WebSphere User Group - 2008

SCA

Java Implementation Example – Implementation (part 2)

public AccountReport getAccountReport(int customerID)

throws AccountDataUnavailableException {

AccountReport accountReport =

accountDataService.getAccountReport(customerID);

List<Stock> stocks = accountReport.getStocks();

List<StockValues> stockValues =

stockQuoteService.getValues(stocks, currency);

accountReport.setStockValues(stockValues);

return accountReport;

}

} // end class

Get the basic account
report using the
account data service

Obtain up to date
stock values using the
stock quote service

Update the account
report with the latest
stock values

29WebSphere User Group - 2008

SCA

SCA (Java) Implementation principles

� Code only to business interfaces
– “Don’t program to SCA, just program…”

– Use Java idioms

– Minimal middleware APIs used only in special cases

� Components declare both the services they offer and
references to other services they need

� Injection of required service References and Property values
– via constructor / via setter methods / via direct field injection

� Java annotations for SCA elements
– services, references, properties

– + more advanced features such as intents, bindings

� Principles apply to other languages

30WebSphere User Group - 2008

SCA

Warehouse

Service

WarehouseComposite

Warehouse
Broker

Component

Warehouse
Component

EventLog
Component

Order

Processing

Service

OrderProcessing
Component

EventLog

Reference

External

Warehouse

Reference

Payments
Component

Payment

Service

AccountsComposite
External

Banking

Reference

Accounts
Ledger

Component

Example SCA assembly

31WebSphere User Group - 2008

SCA

Significant features of SCA Composites

� Distributed

– each component can exist on a different system/process in a network

� Heterogeneous

– assemblies can contain components of mixed implementation types

� Recursive or Nested

– component in a composite can itself be implemented as a composite

� Model existing applications/systems

– either as components or as composites

� Declarative application of infrastructure services

� “keep APIs out of the business logic”

– philosophy for component implementation

32WebSphere User Group - 2008

SCA

SCA Implementation Types:
Client & Implementation Specifications

� Specify how service components and service clients are
built

� Specific to particular language, framework or language/
framework-specific APIs

� Extensible – more languages/frameworks can be added

� Currently defined C&I specifications:

� BPEL

� Java POJO

� Spring Framework

� C++

� EJB (in preparation)

33WebSphere User Group - 2008

SCA

Example Implementation Types

<component name="ComponentA">

<implementation.bpel process="foo:Process/Example/processA"/>

...

</component>

<component name="ComponentB">

<implementation.java name="com.foo.ImplementationB"/>

...

</component>

<component name="ComponentC">

<implementation.spring location="SpringApplicationC.jar"/>

...

</component>

<component name="ComponentD">

<implementation.cpp library="libraryD“ header=“ServiceDImpl.h"/>

...

</component>

BPEL

Java POJO

Spring

C++

34WebSphere User Group - 2008

SCA

SCA Interaction Model

� Synchronous & Asynchronous service

relationships

� Conversational services

� stateful service interactions

� Asynchronous support

� “non-blocking” invocation

� asynchronous client to synchronous service

� callbacks

35WebSphere User Group - 2008

SCA

Bidirectional Interfaces (Callbacks)

� Used for for asynchronous messaging
� Unifies the provider (service) interface with callback interface

� Support for callbacks using Java interfaces

<interface.java interface="services.invoicing.ComputePrice"

callbackInterface="services.invoicing.InvoiceCallback"/>

� Support for callbacks using WSDL portTypes/interfaces

<interface.wsdl

interface="http://example.org/inv#wsdl.interface(ComputePrice)"

callbackInterface="http://example.org/inv#wsdl.interface(InvoiceCallback)"/>

36WebSphere User Group - 2008

SCA

Conversational Interfaces

� Model stateful service interactions

� Frees application programmer from conversation/correlation management

� Imposes requirements on bindings

� Specific operations can be marked as “endsConversation”

� WSDL extensions for “conversational” and “endsConversation”

<portType name="LoanService" sca:requires="conversational" >

<operation name="apply">

<input message="tns:ApplicationInput"/>

<output message="tns:ApplicationOutput"/>

</operation>

<operation name="cancel" sca:endsConversation="true" >

</operation>

...

</portType>

37WebSphere User Group - 2008

SCA

Agenda

� SCA Specifications, Standardization and

Industry Support

38WebSphere User Group - 2008

SCA

SCA Technology

How do I define, configure
and assemble components

to create composites?
���� SCA Assembly Spec

SOAP/
HTTP

JMS
JCA

How do I develop SCA
components in BPEL? Or

in Java? Or C++, PHP,…
���� SCA BPEL Client & Impl

Spec, …

How do I configure SCA
services/references to use

SOAP/HTTP or JMS or JCA, …
���� SCA WS Binding Spec, …

How do I define, use and
administer policies for non-

functional aspects (QoS, etc)?
���� SCA Policy Framework Spec

Composite

Component

39WebSphere User Group - 2008

SCA

The SCA Specifications

Assembly

Implementation

Languages
Policy Framework Bindings

Java JEE

Spring

C++

BPEL

Security

RM

Transactions

Web services

JMS

JCA

40WebSphere User Group - 2008

SCA

Time Line Summary

SDO V1 SDO V2 SDO V2.01 SDO V2.1

SCA V0.9 SCA V0.95 SCA V1.0

Further
complementary
incubation

Finalization of
further
SCA Specs

Press
Announcement of

Project Launch New Partners
Announced

July
2006

Nov
2005

March
2007

Specs 1.0
Submission for
Standardization

SDO TC

SCA TC’s

ISVs Customer Value
System VendorsEarly Adopters

Adoption

41WebSphere User Group - 2008

SCA

Open Source Projects and Implementations

� Apache Tuscany Incubator Project
– Provides SOA programming runtime based on SCA, SDO

– JavaTM & C++ implementations today

– Aim to support several runtimes (eg Tomcat) and protocols

– Associated PHP implementation on PECL site

– http://incubator.apache.org/tuscany

� Eclipse SOA Tools Project
– Eclipse-based tooling for SOA applications and systems

– Based on SCA as model for solutions built using SOA

– Target range of systems including SCA runtimes such as Tuscany

– http://www.eclipse.org/stp/

� Several vendor implementations
– IBM WebSphere, Oracle Fabric, BEA, RogueWave, TIBCO

42WebSphere User Group - 2008

SCA

Summary

� SCA is an agile approach to developing systems using a
service-oriented architecture

– wide industry support

– standardization taking place at OASIS

� SCA is being implemented in Open Source at Apache and at
Eclipse

� SCA is implemented in WebSphere

– WebSphere Application Server 6.1 SOA Feature Pack

– WebSphere Process Server, WebSphere ESB

43WebSphere User Group - 2008

SCA

Useful links…

� OASIS Open CSA
http://www.oasis-opencsa.org/

� OASIS SCA Technical Committees
http://www.oasis-opencsa.org/committees

� Open SOA Collaboration
http://osoa.org/display/Main/Home

� V1 level of SCA specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications

� Useful papers and interesting SCA information:
http://osoa.org/display/Main/SCA+Resources

� OASIS Webinar downloads:
http://www.oasis-opencsa.org/resources

Questions
and

Answers

WebSphere User Group - 2008

SCA

45WebSphere User Group - 2008

SCA

© IBM Corporation 2008. All Rights Reserved.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for
informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant.
While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided AS IS without

warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this

presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of
IBM software.

References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in
these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales,
revenue growth or other results.
Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many factors, including considerations such as the amount of

multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance

can be given that an individual user will achieve results similar to those stated here.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics may vary by customer.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of
IBM trademarks, see www.ibm.com/legal/copytrade.shtml
AIX, CICS, CICSPlex, DB2, DB2 Universal Database, i5/OS, IBM, the IBM logo, IMS, iSeries, Lotus, OMEGAMON, OS/390, Parallel Sysplex, pureXML,
Rational, RCAF, Redbooks, Sametime, System i, System i5, System z , Tivoli, WebSphere, and z/OS.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

