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availability, content, performance or function of any 
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3WebSphere User Group - 2008

SCA

Service Component Architecture (SCA):

A model for the creation of business systems 
using Service-Oriented Architecture
by the composition and deployment 
of new and existing service components

� SCA: Why

� SCA: Scenarios

� SCA: Details

� SCA: Specifications, Standardization and 
Industry Support
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What We have Today

� Complexity
� Rigid, brittle architectures
� Inability to evolve
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What we want to get to

� Well-defined interfaces with business-level semantics

� Standardized communication protocols

� Flexible recombination of services to enhance software flexibility

Service-Oriented Architecture is one of the key technologies to enable 
flexibility and reduce complexity

+
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SOA Programming Model (1)

� SOA Programming Model derives from the 
basic concept of a service:

– A service is an abstraction that encapsulates a software function.

– Developers build services, use services and develop solutions that aggregate 
services.

– Composition of services into integrated solutions is a key activity



7WebSphere User Group - 2008

SCA

SOA Programming Model (2)

� Core Elements:

– Service Assembly
– technology- and language- independent representation of composition of services

– Service Components
– technology- and language-independent representation of composable service 

implementation

– Service Data Objects
– technology- and language-Independent representation of service data entity
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What are SCA and SDO?

� Service Component Architecture
–an executable model for building service-oriented 
applications as composed networks of service 
components

–“how to build composite service applications”

� Service Data Objects
–a unified model for the handling of (service) data 
irrespective of its source or target

–“how to handle data in a services environment”
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Service Component Architecture (SCA): 
Simplified Programming Model for SOA

� executable model for:
� building service components

� assembling components into applications 

� deploying to (distributed) runtime environments

– Service components built from new or existing code 

using SOA principles

– vendor-neutral – supported across the industry

– language-neutral – components written using any 
language

– technology-neutral – use any communication 
protocols and infrastructure to link components
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SCA: What is it NOT

� Does not model individual workflows
– use BPEL or other workflow languages

� Is not Web services
– SCA may use Web services, but can also build solutions with 

no Web services content

� Is not tied to a specific runtime environment
– distributed, hetergeneous, large, small

� Does not force use of specific programming 
languages and technologies
– aims to encompass many languages, technologies



11WebSphere User Group - 2008

SCA

Key benefits of SCA

� Loose Coupling: components integrate without need to know how others 

are implemented

� Flexibility: components can easily be replaced by other components

� Services can be easily invoked either synchronously or asynchronously 

� Composition of solutions: clearly described

� Productivity: easier to integrate components to form composite application

� Heterogeneity: multiple implementation languages, communication 

mechanisms

� Declarative application of infrastructure services

� Simplification for all developers, integrators and application deployers
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Warehouse

Service

WarehouseComposite
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Component
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SCA assembly
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Java EE

C++

SOAP/HTTP

JMS
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Agenda

� SCA scenarios
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Bottom-up Composition

Select a set of existing component 
implementations for building the new 
composite

services references

properties

Configure the component properties

Hand off  the composite to 

Deployer

Composite

Draw internal wires

properties
Wrap the components in a 
composite and configure  
external services/references



15WebSphere User Group - 2008

SCA

Top-down Composition

Start with gathering 
requirements for the top-level 
composite

Define the services/references 

and properties for the composite

Composite

Service

Ref

Properties

Break down the composite 

into individual components 
and wires between them

Recursively break down 
each component

Hand off the individual 
component contracts to 

developers for implementation

Ref
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Heterogeneous Assembly

Components in the same composite share a common 
context for many aspects such as installation, 
deployment, security settings, logging behavior, etc.

Java
BPEL

Legacy

PHP

C++
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Implementation Reuse 
– By Configuration

Select an existing component 
implementation

Configure its behavior (via setting 
props, refs) to match the current 

requirements

E.g. Configure multiple instances 
of product pricing component, 
each with different currency, tax 

rate, discount charts, etc.
Component

… …

Services

References

Properties

Implementation

- Java

- BPEL
- Composite

Deploy the component implementation
- Multiple instances of the same 
implementation may be running 

simultaneously
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Deployment Flexibility

Services

References

PropertiesSOAP/HTTP
WS Binding

JMS 
Binding

JCA Binding

WS

Clients

WS

Clients

JMS
Clients

JMS
Clients

ERP

Service

ERP

Service

Deployer chooses and configures communication 
mechanisms for services/references without 
having to modify the component implementation
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Abstract policy decleration

0. Policy Administrator authors SCA policySets with concrete policies
1.  Developer specifies intents on SCA assembly
2. Developer hands over SCA assembly to Deployer
3. Deployer configures SCA assembly by assigning SCA policySets (could be automated)
4. Deployer deploys configured SCA Assembly to SCA Runtime
5. Deployer updates Registry

Repository

RegistrySCA
policySets

Developer

SCA Runtime

Deployer

SCA
Assembly

1 2
SCA

Assembly

Policy 
Administrator

0

3
4

5
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Agenda

� SCA details
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SCA Elements

� Assembly Model
– how to define structure of composite applications

� Client & Implementation specifications
– how to write business services in particular languages

– Java, C++, BPEL, PHP….

� Binding specifications
– how to use access methods

– Web services, JMS, RMI-IIOP, REST…

� Policy Framework
– Security, Transactions, Reliable messaging…
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Component

� configured instance of implementation
– more than one component can use same implementation

� provides and consumes services

� Sets values for implementation properties

� Sets service references by wiring them to services

Component… …

services

references

properties

Implementation
- Java
- BPEL
- Composite
…
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Composite

Composite A

Component
AService

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Component
B

Service interface
- Java interface
- WSDL PortType

Reference interface
- Java interface
- WSDL PortType

Wire
PromotePromote

Reference

Property
setting

Properties
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Service
AccountService

Reference
StockQuote
Service

AccountData
Service
Component

bigbank.accountcomposite

AccountService
Component

Service
AccountService

AccountData
Service
Component

Simple Example
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<reference name=“StockQuoteService" promote="AccountServiceComponent/StockQuoteService">

<interface.java interface="services.stockquote.StockQuoteService"/>

<binding.ws port="http://example.org/StockQuoteService#

wsdl.endpoint(StockQuoteService/StockQuoteServiceSOAP)"/>

</reference>

<service name="AccountService" promote="AccountServiceComponent">

<interface.java interface="services.account.AccountService"/>

<binding.ws port="http://www.example.org/AccountService#

wsdl.endpoint(AccountService/AccountServiceSOAP)"/>

</service>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="bigbank.accountcomposite" >

<composite>

<component name="AccountServiceComponent">

<implementation.java class="services.account.AccountServiceImpl"/>

<reference name="StockQuoteService"/>

<reference name="AccountDataService"

target="AccountDataServiceComponent/AccountDataService"/>

<property name="currency">EURO</property>

</component>

<component name="AccountDataServiceComponent">

<implementation.bpel process=“QName"/>

<service name="AccountDataService">

<interface.java interface="services.accountdata.AccountDataService"/>

</service>

</component>

StockQuotebigbank.accountcomposite

AccountService
Component

Service
AccountService

Reference
StockQuote
Service

AccountData
Service
Component

Reference
StockQuote
Service



26WebSphere User Group - 2008

SCA

Java Implementation Example: 
Service Interface

package org.example.services.account;

@Remotable

public interface AccountService {

public AccountReport getAccountReport(String customerID);

}

Interface is callable 
remotely

eg. as a Web service
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Java Implementation Example – Implementation (part 1)

package org.example.services.account;

import org.osoa.sca.annotations.*;

@Service(interfaces = AccountService.class)

public class AccountServiceImpl implements AccountService {

private String currency = "USD";

private AccountDataService accountDataService;

private StockQuoteService stockQuoteService;

public AccountServiceImpl( 

@Property("currency") String currency,

@Reference("accountDataService") AccountDataService dataService,

@Reference("stockQuoteService") StockQuoteService stockService) {

this.currency = currency;

this.accountDataService = dataService;

this.stockQuoteService = stockService;

}

Annotation for the 

service offered by 
this class

Constructor with 
annotations for 
injected property 

and references
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Java Implementation Example – Implementation (part 2)

public AccountReport getAccountReport(int customerID) 

throws AccountDataUnavailableException {

AccountReport accountReport = 

accountDataService.getAccountReport(customerID);

List<Stock> stocks = accountReport.getStocks();

List<StockValues> stockValues = 

stockQuoteService.getValues( stocks, currency );

accountReport.setStockValues( stockValues );

return accountReport;

}

} // end class

Get the basic account 
report using the 
account data service

Obtain up to date 
stock values using the 
stock quote service

Update the account 
report with the latest 
stock values
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SCA (Java) Implementation principles

� Code only to business interfaces
– “Don’t program to SCA, just program…”

– Use Java idioms

– Minimal middleware APIs used only in special cases

� Components declare both the services they offer and 
references to other services they need

� Injection of required service References and Property values
– via constructor / via setter methods / via direct field injection

� Java annotations for SCA elements
– services, references, properties

– + more advanced features such as intents, bindings

� Principles apply to other languages
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Warehouse

Service

WarehouseComposite

Warehouse
Broker

Component

Warehouse
Component

EventLog
Component

Order

Processing

Service

OrderProcessing
Component

EventLog

Reference

External

Warehouse

Reference

Payments
Component

Payment

Service

AccountsComposite
External  

Banking 

Reference

Accounts
Ledger

Component

Example SCA assembly
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Significant features of SCA Composites

� Distributed

– each component can exist on a different system/process in a network

� Heterogeneous

– assemblies can contain components of mixed implementation types

� Recursive or Nested

– component in a composite can itself be implemented as a composite

� Model existing applications/systems

– either as components or as composites

� Declarative application of infrastructure services

� “keep APIs out of the business logic”

– philosophy for component implementation
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SCA Implementation Types:
Client & Implementation Specifications

� Specify how service components and service clients are 
built

� Specific to particular language, framework or language/ 
framework-specific APIs

� Extensible – more languages/frameworks can be added

� Currently defined C&I specifications:

� BPEL

� Java POJO

� Spring Framework

� C++

� EJB (in preparation)
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Example Implementation Types

<component name="ComponentA">

<implementation.bpel process="foo:Process/Example/processA"/>

...

</component>

<component name="ComponentB">

<implementation.java name="com.foo.ImplementationB"/>

...

</component>

<component name="ComponentC">

<implementation.spring location="SpringApplicationC.jar"/>

...

</component>

<component name="ComponentD">

<implementation.cpp library="libraryD“ header=“ServiceDImpl.h"/>

...

</component>

BPEL

Java POJO

Spring

C++
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SCA Interaction Model

� Synchronous & Asynchronous service 

relationships

� Conversational services

� stateful service interactions

� Asynchronous support

� “non-blocking” invocation

� asynchronous client to synchronous service

� callbacks
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Bidirectional Interfaces (Callbacks)

� Used for for asynchronous messaging
� Unifies the provider (service) interface with callback interface

� Support for callbacks using Java interfaces

<interface.java interface="services.invoicing.ComputePrice"

callbackInterface="services.invoicing.InvoiceCallback"/>

� Support for callbacks using WSDL portTypes/interfaces

<interface.wsdl

interface="http://example.org/inv#wsdl.interface(ComputePrice)"

callbackInterface="http://example.org/inv#wsdl.interface(InvoiceCallback)"/>
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Conversational Interfaces

� Model stateful service interactions

� Frees application programmer from conversation/correlation management

� Imposes requirements on bindings

� Specific operations can be marked as “endsConversation”

� WSDL extensions for “conversational” and “endsConversation”

<portType name="LoanService" sca:requires="conversational" >

<operation name="apply">

<input message="tns:ApplicationInput"/>

<output message="tns:ApplicationOutput"/>

</operation>

<operation name="cancel" sca:endsConversation="true" >

</operation>

...

</portType>
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Agenda

� SCA Specifications, Standardization and 

Industry Support
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SCA Technology

How do I define, configure 
and assemble components 

to create composites?
���� SCA Assembly Spec

SOAP/
HTTP

JMS
JCA

How do I develop SCA 
components in BPEL? Or 

in Java? Or C++, PHP,…
���� SCA BPEL Client & Impl

Spec, …

How do I configure SCA 
services/references to use 

SOAP/HTTP or JMS or JCA, …
���� SCA WS Binding Spec, …

How do I define, use and 
administer policies for non-

functional aspects (QoS, etc)?
���� SCA Policy Framework Spec

Composite

Component
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The SCA Specifications

Assembly

Implementation

Languages
Policy Framework Bindings

Java JEE

Spring

C++

BPEL

Security

RM

Transactions

Web services

JMS

JCA
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Time Line Summary

SDO V1 SDO V2 SDO V2.01 SDO V2.1

SCA V0.9 SCA V0.95 SCA V1.0

Further 
complementary 
incubation

Finalization of
further
SCA Specs

Press 
Announcement of 

Project Launch New  Partners 
Announced

July 
2006

Nov 
2005

March 
2007

Specs 1.0  
Submission for 
Standardization

SDO TC

SCA TC’s

ISVs         Customer Value
System VendorsEarly Adopters

Adoption
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Open Source Projects and Implementations

� Apache Tuscany Incubator Project
– Provides SOA programming runtime based on SCA, SDO

– JavaTM & C++ implementations today

– Aim to support several runtimes (eg Tomcat) and protocols

– Associated PHP implementation on PECL site

– http://incubator.apache.org/tuscany

� Eclipse SOA Tools Project
– Eclipse-based tooling for SOA applications and systems

– Based on SCA as model for solutions built using SOA

– Target range of systems including SCA runtimes such as Tuscany

– http://www.eclipse.org/stp/

� Several vendor implementations
– IBM WebSphere, Oracle Fabric, BEA, RogueWave, TIBCO
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Summary

� SCA is an agile approach to developing systems using a 
service-oriented architecture

– wide industry support

– standardization taking place at OASIS

� SCA is being implemented in Open Source at Apache and at 
Eclipse

� SCA is implemented in WebSphere

– WebSphere Application Server 6.1 SOA Feature Pack

– WebSphere Process Server, WebSphere ESB
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Useful links…

� OASIS Open CSA
http://www.oasis-opencsa.org/

� OASIS SCA Technical Committees
http://www.oasis-opencsa.org/committees

� Open SOA Collaboration
http://osoa.org/display/Main/Home

� V1 level of SCA specifications
http://osoa.org/display/Main/Service+Component+Architecture+Specifications

� Useful papers and interesting SCA information:        
http://osoa.org/display/Main/SCA+Resources

� OASIS Webinar downloads:
http://www.oasis-opencsa.org/resources
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